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Stability of global entanglement in thermal states of spin chains
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We investigate the entanglement properties of a one dimensional chain of qubits coupled via nearest neighbor
spin-spin interactions. The entanglement measure used is then-concurrence, which is distinct from other mea-
sures on spin chains such as bipartite entanglement in that it can quantify “global” entanglement across the spin
chain. Specifically, it computes the overlap of a quantum state with its time-reversed state. As such this measure
is well suited to study ground states of spin chain Hamiltonians that are intrinsically time reversal symmetric.
We study the robustness ofn-concurrence of ground states when the interaction is subject to a time reversal
antisymmetric magnetic field perturbation. Then-concurrence in the ground state of the isotropic XX model is
computed and it is shown that there is a critical magnetic field strength at which the entanglement experiences
a jump discontinuity from the maximum value to zero. Then-concurrence for thermal mixed states is derived
and a threshold temperature is computed below which the system has non zero entanglement.

PACS numbers: 03.65.Ud, 05.50.+q,75.10.Jm

I. INTRODUCTION

There is considerable interest in understanding the distinc-
tion between quantum and classical correlations in many-body
systems. Common examples found in nature are collections of
spins coupled by pairwise interactions. Spin chain Hamilto-
nians are described by nearest neighbor interactions between
spins (usuallys= 1/2) particles. A typical example is the one
dimensional quantum XYZ model:

HXYZ(h) = ∑
j

Jxσx
jσ

x
j+1 +Jyσy

jσ
y
j+1 +Jzσz

jσ
z
j+1 +hσz

j . (1)

which describes pairwise interactions with a homogeneous ex-
ternal magnetic fieldh that acts locally on each spin. While
these models are only an approximation to the real physics,
they are rich enough to extract essential statistical properties
of the underlying system. A striking phenomenon in many of
these systems is the existence of a quantum phase transition
(QPT) described by the analytic discontinuity in some ther-
modynamic quantity with the variation of a system interaction
parameter. For the XY model (Jz = 0) the QFT is manifested
by the divergence in the range of pairwise spin correlationsat
a critical magnetic field strength.

Given that long range classical correlations are present in
the ground states of spin chains it is to be expected that these
correlations can be related to functions quantifying quantum
entanglement. Several significant results have already been
obtained for the XY model. It has been shown that a measure
of entanglement between pairs of spins, the 2-concurrence,
experiences a QFT at the same critical magnetic field strength
as the transition point for classical spin correlations [1,2].
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These studies also show that in the isotropic, or XX model
(Jx = Jy,Jz = 0), the range of pairwise entanglement is infi-
nite in the thermodynamic limit even though this case does
not admit a QFT. The entanglement in a bipartite division of
a spin chain into two contiguous blocks has been studied in
Ref. [3]. There the von Neumann entropy of the reduced state
of one block was used as the entanglement measure. By this
measure, that the entanglement obeys universal scaling laws
in accordance with conformal invariance. In another work, it
was proven that there is another characterization of entangle-
ment, the localizable entanglementξE, whose range is always
at least as long as classical correlation lengths [4]. The quan-
tity ξE is defined as the maximum pairwise entanglement that
can be localized on two qubits, on average, by optimizing over
local operations on the other qubits.

These investigations focused on bipartite entanglement be-
tween individual spins or blocks of spins. Recently, it was
shown that the notion of entanglement can be generalized be-
yond subsystems by computing the purity of state with respect
to a chosen subalgebra [5]. Applied to the XY model, the rele-
vant subalgebra is the set of number non-conserving fermionic
operators that connect different irreducible representations of
the unitary Lie algebrau(n), wheren is the number of modes.
The purity can then be expressed in terms of fluctuations of
the total fermion number and it is characterized by a second
order QFT at the critical magnetic field strength [6].

All of the aforementioned results add considerable insight
into how nonlocal correlations between spins are distributed in
the ground states of spin chain Hamiltonians. In this paper we
take a different approach to studying the entanglement of spin
chains. We do not seek a correspondence in the behavior of
entanglement and classical correlation functions near critical
points. Rather, we investigate the stability of “global” entan-
glement across the system when subject to environmentally
influenced effects such as finite temperature and perturbation
by a magnetic field. Any approach to this problem must con-
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tend with the non-uniqueness of a single measure of global
entanglement in a multipartite system. We pick a measure
of entanglement, then-concurrence, that is motivated by an
underlying time reversal symmetry of the XYZ model. The
hope is that by studying the behavior of global entanglement
we can gain some insight into how long range quantum cor-
relations appear in systems that are already highly correlated
classically.

The paper is organized as follows. The properties of the
entanglement measure are discussed in Sec. II. In Sec. III the
ground state entanglement in the one dimensional XY model
with periodic boundaries is studied. It is shown that the XX
model displays a jump discontinuity inn-concurrence when
the perturbing magnetic field reaches a critical strength. The
entanglement in a thermal state is computed in Sec. IV and the
threshold temperature is derived which sets an upper bound
on how mixed the state can be before then-concurrence van-
ishes. The computation of entanglement for thermal states
relies on an important theorem derived in Appendix A that
yields a closed form expression for the concurrence of mixed
states. In Sec. V the preceding analysis is extended to the
quantum XX model with open boundaries. Issues concerning
the experimental observation of entanglement in spin chains
are discussed in Sec. VI. Finally, a summary and conclusions
are presented in Sec. VII.

II. PROPERTIES OF n-CONCURRENCE

A basic mathematical tool for studying entanglement is the
entanglement monotone. It is a mathematical function that
maps states to real numbers and exhibits two important prop-
erties. First, it is zero for separable states, i.e. those that can
be described purely by classical probability distributions; sec-
ond, it is non-increasing on average under local operations
and classical communication. There are many monotones to
choose from that quantify entanglement in multipartite sys-
tems. The choice of measure may be best dictated by the un-
derlying symmetries of the system if there are any.

The monotone we study is concurrence. The 2-concurrence
was originally derived by Wootters [7] and later generalized
to any even number of qubitsn [8]. On a pure state|ψ〉 the
n-concurrence is defined

Cn(|ψ〉) =
∣

∣〈ψ|℧|ψ〉
∣

∣, (2)

where℧ is an anti-unitary time-reversal operator. When act-
ing on n qubits, we can write℧ = [∏n

j=1(−iσy
j)]τ, whereτ

is the complex conjugation operator. Then-concurrence and
its square, then-tangle, have been shown to be entanglement
monotones [8, 9] forn even, and forn odd are identically zero.
The range of the measure is 0≤Cn(|ψ〉)≤ 1.

The n-concurrence is an attractive measure for two rea-
sons. First, it is sensitive to global entanglement in the
sense that it is zero if any qubit is separable from the
rest of the system. This does not imply that each qubit
is entangled with every other qubit, however. For in-
stance, then-party Greenberger-Horne-Zeilinger (GHZ) state

|GHZn〉 = 1/
√

2(|0. . .0〉 + |1. . .1〉) is maximally concur-
rent but this can also be the case for sub-global entangle-
ment, e.g. C8(|GHZ4〉 ⊗ |GHZ4〉) = 1. Furthermore, some
entangled states have vanishing concurrence, e.g.|W4〉 =
(1/2)[ |0001〉+ |0010〉+ |0100〉+ |1000〉 ]. Nevertheless, it
is sensitive to entanglement described by superpositions of
states and their spin flips. Second, then-concurrence mea-
sures the overlap of a quantum state with its time reversed
state and it is thus a natural function to choose for eigenstates
of a Hamiltonian that respects this symmetry. Any Hamilto-
nian that can be written as a sum of tensors of an even number
of non identity Pauli operators only is time reversal symmet-
ric. For example, exclusively pairwise interactions satisfy this
condition

℧HXYZ(0)℧−1 = HXYZ(0). (3)

This symmetry has important consequences with regard to en-
tanglement of eigenstates.

Proposition II.1 ([10]) Let H be a Hamiltonian on some
number n of quantum-bits. Suppose H has time-reversal sym-
metry with respect to℧. Let λ be a fixed eigenvalue of H.
Then either (i)λ is degenerate (i.e. has multiplicity at least
two,) or (ii) the normalized eigenstate|λ〉 has Cn(|λ〉) = 1.
Should n= 2p−1, p∈N, then case (i) always holds.

Notice that if any spin does not interact with the others in
a collection of spins then there will be a degeneracy. There
are several examples of spin-chain Hamiltonians with non-
degenerate ground states. Among them is the XYZ Hamilto-
nian withJx = Jy = Jz≡ J > 0, also known as the Heisenberg
interaction. It’s ground state was proven by Lieb and Mattis
[12] to be non-degenerate in any number of dimensions, with
or without periodic boundary conditions provided the under-
lying lattice has reflection symmetry about some plane. Addi-
tionally, in 1D, the XY Hamiltonians withJx,Jy 6= 0,Jz = 0 are
non-degenerate [13]. In this paper we focus on entanglement
properties of the latter.

Extending measures of entanglement on pure states to en-
sembles of pure states, or mixed states, can be carried out by
averaging over the entanglement of pure states in the ensem-
ble. The choice of the state decomposition should not in-
crease the amount of entanglement, therefore, the entangle-
ment should be minimized over all valid decompositions of
the state. This formulation is known as the convex roof of the
function and forn-concurrence it is written:

Cn(ρ) = min

{

∑
j

p jCn(|ψ j〉); ρ = ∑
j

p j |ψ j〉〈ψ j |
}

. (4)

Remarkably, then-concurrence of a mixed state onn even
qubits can be expressed in closed form (see Appendix A):

C(ρ) = max

{

0,λ0−
N−1

∑
j=1

λ j

}

. (5)

Here{λ j}N−1
j=0 = spec(

√

ρ℧ρ℧−1), where spec(A) denotes
the spectrum of the operatorA, andN = 2n is the dimension of
the system. The set of eigenvalues are real, positive numbers
arranged in non-increasing order:λ0≥ λ1 . . .≥ λN−1.
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III. GROUND STATE ENTANGLEMENT

The XY model with a uniform magnetic fieldh is written

HXY(h) =
n

∑
l=1

Jxσx
l σx

l+1 +Jyσy
l σy

l+1 +hσz
1. (6)

Here we have assumed cyclic boundary conditions(σα
n+k ≡

σα
k ). Additionally, we assumen to be even. The pres-

ence of the magnetic field breaks the time reversal symme-
try of the interaction. Indeed, the magnetic field interaction
HB = h∑n

j=1σz
j contains a sum of terms involving only odd

numbers of Pauli operators and therefore it is time-reversal
anti-symmetric [10]:℧HB℧−1 =−HB, i.e.

℧HXY(h)℧−1 = HXY(−h). (7)

We study how robust then-concurrence of the ground state is
to perturbation by the magnetic field.

The eigenvalues and eigenvectors ofHXY(h) can be solved
for exactly by performing the Jordan-Wigner transformation
from Pauli operators to fermionic operators followed by a
Fourier transformation. The Jordan-Wigner transformation is
given by

a†
j = ν jσ−j , a j = σ+

j ν j , (8)

where the introduction of the non-local termsνl = ⊗l−1
k=1σz

k =

⊗l−1
k=1(1−2nk) = (−1)∑l−1

k=1a†
kak enforces the anticommutation

relations:

{a†
k,ak′}= δkk′ , {ak,ak′}= {a†

k,a
†
k′}= 0. (9)

Define the Fourier transformed creation and annihilation op-
erators as:

A†
j =

1√
n

n

∑
k=1

a†
keiπ( jk/n−1/4) (10)

whereA†
2n+k ≡ A†

k. Following Katsura [13] we can decom-
pose HXY(h) into two subspaces corresponding to the±
eigenvalues of the operatorνn+1 =⊗n

k=1σz
k = (−1)∑n

k=1 a†
kak =

(−1)∑n
k=1 A†

2kA2k. This amounts to a partitioning of the system
into even and odd parity halves of the total number of excita-
tions:

HXY(h) =
1
2
(1+ νn+1)H

+ +
1
2
(1−νn+1)H

−. (11)

In terms of the new fermionic operatorsAk,A
†
k, the Hamil-

tonianHXY reduces to block diagonal form with each block
spanned by particle occupation in positive and negative “mo-
mentum” number statesA†

kAk. The even parity sector ofHXY
is

H+ =
n/2

∑
k=1

H2k−1 (12)

FIG. 1: Plot of the 4-concurrence of the XY model as a function
of magnetic field strength and anisotropyγ = (Jx− Jy)/2J where
J = (Jx+Jy)/2. In the isotropic case(Jx = Jy), there is a critical mag-
netic field strengthhcrit where then-concurrence experiences a jump
discontinuity from a value of one for|h|< hcrit to zero at|h| ≥ hcrit .
Forn = 4, hcrit = 2J tan(π/8).

where

Hk =







−2εk −2δk 0 0
−2δk 2εk 0 0

0 0 0 0
0 0 0 0






for 1≤ k≤ n, (13)

in the basis{|0〉,A†
kA†
−k|0〉,A

†
k|0〉,A

†
−k|0〉}. The matrix ele-

ments are

εk = (Jx +Jy)cos(πk/n)−h, δk = (Jx−Jy)sin(πk/n).
(14)

Similarly, the odd parity sector is,

H− = H0 +Hn +
n/2−1

∑
k=1

H2k (15)

where the two boundary terms are

H0 =

(

−ε0 0
0 ε0

)

, Hn =

(

−εn 0
0 εn

)

(16)

in the bases{|0〉,A†
0|0〉} and{|0〉,A†

n|0〉} respectively.
The Hamiltonian can be brought to full diagonal form by

a Bogoliubov transformation on the operatorsHk to a set of
fermionic operatorsβk,β†

k whose number is conserved. The
transformation is:

βk = cos(θk)Ak +sin(θk)A
†
−k, β†

k = cos(θk)A
†
k +sin(θk)A−k

(17)
where tan(2θk) = δk/εk. In many treatments of the statistical
properties of the XY model, the boundary termsH0,Hn are
dropped with the justification that their contribution is negli-
gible in the thermodynamic limit [11]. Because we are inter-
ested in entanglement properties of the system for all evenn,
we keep these terms.

We wish to compute then-concurrence of the ground state
of HXY(h) which we denote|ψg(h)〉. One approach is to
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explicitly calculateCn(|ψg(h)〉) = |〈ψg(h)|℧|ψg(h)〉|. Be-
cause the Hamiltonian is real, the energy eigenstates are
real and this amounts to computing the expectation value
〈ψg|(−iσy)⊗n|ψg〉. After performing the transformation from
the operatorsσy

j to the fermionic operators, there will be

O(n2) terms to sum in the expectation value. An alterna-
tive approach is facilitated using the expression for then-
concurrence of mixed states, Eq. 5. The problem is reduced
to finding spec(

√

ρ℧ρ℧−1), associated with the ground state:

ρT=0 = |ψg(h)〉〈ψg(h)| = lim
T→0

e−βHXY(h)

Z
, . (18)

whereZ = Tr[e−βH ] is the partition function. In describing
the state as theT → 0 limit of the thermal sample we have
implicitly assumed the ground state is non-degenerate. All
ground states ofHXY(0) with Jx,Jy 6= 0 are non degenerate but
degeneracies do occur at finite magnetic field strengths. In the
present discussion we assume that at any given degeneracy
point, the state of the system is in a single (zero entropy) pure
state. This assumption is dropped in Sec. IV where it is shown
that thermal states with degenerate ground states have zeron-
concurrence. Proceeding with this qualification in mind we
have

℧ρT=0℧
−1 = ℧

(

lim
T→0

e−βHXY(h)

Z

)

℧−1

= lim
T→0

℧
e−βHXY(h)

Z ℧
−1

= lim
T→0

e−β℧HXY(h)℧−1

Z

= lim
T→0

e−βHXY(−h)

Z

= |ψg(−h)〉〈ψg(−h)|,

(19)

where in the fourth line we have used Eq. 7. The matrix
ρT=0℧ρT=0℧

−1 is at most rank one and then-concurrence of
the ground state ofHXY(h) is therefore,

Cn(|ψg(h)〉) =
∣

∣〈ψg(h)|ψg(−h)〉
∣

∣. (20)

The entanglement of the ground state of the XY model
in n = 4 qubits is plotted in Fig. 1. Notice the symme-
try of then-concurrence underh→−h as anticipated in Eq.
20. At zero magnetic fieldHXY is time reversal symmetric
and non-degenerate so the 4-concurrence is equal to one for
anisotropies in the range 0≤ γ < 1. In the isotropic case, there
appears to be a jump discontinuity in the entanglement at a
critical magnetic field strengthhcrit . We proceed to show that
this phenomenon arises for all evenn and thathcrit is given
by the minimum field strength at which the ground eigenstate
becomes doubly degenerate.

Henceforth, we focus on the isotropic XX model(Jx = Jy≡
J). In this case, the HamiltonianHXX(h) is already diagonal in
the number operatorsA†

kAk,A
†
−kA−k. The eigenvalues ofH+

are given by:

E+ =

{ n/2

∑
k=1

x2k−1; xk ∈ {−εk,εk,0,0}
}

(21)

There are a total of 4n/2 eigenvalues obtained by the sum over
elements in the set. However, the projection 1/2(1+νn+1)H+

requires that each energy eigenvalue be equal to a sum of
n/2 terms in the set with the difference between the number
of ± signs in the sum satisfying #(+)−#(−) = n/2 mod 2.
This makes the total number of eigenvalues obtained fromH+

equal to 2n/2. Similarly,

E− =

{

± ε0± εn +
n/2−1

∑
k=1

x2k; xk ∈ {−εk,εk,0,0}
}

, (22)

where the projection 1/2(1−νn+1)H− requires that each en-
ergy eigenvalue be equal to a sum ofn/2 terms satisfying
#(+)−#(−) = (n/2+1) mod 2.

To analyze the concurrence of the ground states we note that
HXX(h) and thez projection of the collective spin operator,
Sz = ∑n

j=1 σz
j , are simultaneously diagonalizable, i.e.

[ n

∑
j=1

Jσx
jσ

x
j+1 +Jσy

jσ
y
j+1 +hSz , Sz

]

= 0. (23)

This is not true for the anisotropic interaction. The fact thatSz
is a conserved quantity implies that while the eigenvalues of
HXX(h) are functions ofh, the eigenstates are independent of
h. We label the (possibly degenerate) ground state ofHXX(h)
with its corresponding eigenvaluessz of Sz, as|ψsz

g (h)〉. Notice
the expectation value ofSz in terms of the fermionic number
operators is

〈

Sz
〉

=
〈

∑n
k=1(1−2a†

kak)
〉

= n−2
〈

∑n
k=1A†

2kA2k
〉

= n−2
〈

∑n
k=1A†

2kA2k
〉

(24)

Introducing the concurrence bilinear formCn(|ψ〉, |φ〉) =

〈φ|℧|ψ〉, satisfying [9]Cn(|ψ〉) = |Cn(|ψ〉, |ψ〉)|, we find

Cn
(

Sz|ψsz
g (h)〉,Sz|ψsz

g (h)〉
)

= s2
z Cn

(

|ψsz
g (h)〉, |ψsz

g (h)〉
)

= 〈ψsz
g (h)| S†

z℧Sz℧
−1℧ |ψsz

g (h)〉

= 〈ψsz
g (h)| S†

z(−Sz)℧ |ψsz
g (h)〉

= −s2
z Cn

(

|ψsz
g (h)〉, |ψsz

g (h)〉
)

.
(25)

Here we have used the reality of the eigenstates and the eigen-
valuessz, and the fact thatSz is time-reversal antisymmetric.
Consequently,

Cn
(

|ψsz
g (h)〉

)

= 0 if sz 6= 0. (26)

Then-concurrence of the ground state ofHXX(0) is one as
per Prop. II.1, therefore it is identified with the quantum num-
bersz = 0. As the magnetic field is increased, the energy gap
decreases between the state|ψ0

g(h)〉 and a state with differ-

ent symmetry,|ψ|sz|=2
g (h)〉, until they become degenerate at a

magnetic field strengthhcrit . At this value ofh, the ground
staten-concurrence is zero. For|h| > hcrit , it is energetically
favorable for the spins to align meaning the spin projection
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|sz| can only increase so then-concurrence remains zero by
Eq. 26. In order to identify the degeneracy point we must
consider two cases: the situtation withn/2 even, andn/2 odd.
For both we assumeJ > 0, although a completely analogous
argument can be made forJ < 0.

A. Casen/2 even

At zero magnetic field and forJ > 0 the ground state energy
is the lowest eigenvalue ofH+:

E0 = −8J
n/4

∑
k=1

cos

(

π(2k−1)

n

)

= −4Jcsc(π/n) (27)

corresponding to the ground state

|ψ0
g(|h|< hcrit )〉=

n/2

∏
k=n/4+1

A†
2k−1A†

−(2k−1)
|0〉. (28)

As h increases from zero,E0 becomes degenerate with the
lowest eigenvalue ofH−:

E−min =−8J
n/4

∑
k=1

cos

(

π2k
n

)

−2h−4J =−4Jcot(π/n)−2h

(29)
corresponding to the state

|ψ−2
g (hcrit )〉=

[ n/2−1

∏
k=n/4−1

A†
2kA

†
−2k

]

A†
n|0〉. (30)

The magnetic field strength where this degeneracy occurs is

hcrit = −2J[cot(π/n)−csc(π/n)] = 2J tan

(

π
2n

)

. (31)

B. Casen/2 odd

At zero magnetic field and forJ > 0 the ground state energy
is the lowest eigenvalue ofH−:

E0 =−8J
(n−2)/4

∑
k=1

cos

(

π2k
n

)

=−4Jcsc(π/n) (32)

corresponding to the ground state

|ψ0
g(|h|< hcrit )〉=

[ n/2−1

∏
k=(n+2)/4

A†
2kA

†
−2k

]

A†
n|0〉. (33)

As h increases from zero,E0 becomes degenerate with the
lowest eigenvalue ofH+:

E+
min =−8J

(n−2)/4

∑
k=1

cos

(

π(2k−1)

n

)

−2h=−4Jcot(π/n)−2h

(34)

corresponding to the state

|ψ−2
g (hcrit )〉=

n/2

∏
k=n/4+1

A†
2k−1A†

−(2k−1)|0〉. (35)

The magnetic field strength where this degeneracy occurs is
again

hcrit = 2J tan

(

π
2n

)

. (36)

IV. THERMAL ENTANGLEMENT

The thermal state of a system with intrinsic HamiltonianH
is given by

ρT =
e−βH

Z
= ∑

j

g j

∑
k=1

e−βE j |χk
j〉〈χk

j |
Z

, (37)

whereβ = 1/kBT, with kB the Boltzmann constant, and the
{|χk

j〉} are the energy eigenstates ofH corresponding to en-

ergyE j with degeneracyg j . HereZ = Tr[e−βH ] is the partition
function.

In the case that the intrinsic Hamiltonian is time reversal
symmetric, the spin-flipped thermal state satisfies

℧ρT℧−1 = ℧e−βH℧−1/Z

= e−β℧H℧
−1

/Z
= ρT .

(38)

Thus{λ j} = spec[(ρT℧ρT℧−1)1/2] = spec[ρT ] is just the set
of probabilities to be in a thermal eigenstate. Using Eq.5 we
then find

Cn(ρT) = max

{

0,2e−βE0/Z−1

}

, (39)

whereE0 is the ground state energy ofH. Because the par-
tition function is a sum of positive terms, it is confirmed that
C(ρT) = 0 if the ground state ofH is degenerate.

The HamiltonianHXX(h) is not time reversal symmetric
for h 6= 0. However, the concurrence for thermal states with
a finite magnetic field is simply proportional to the concur-
rence at zero field as we now show. Using the notation
Z(h) = Tr[e−βHXX(h)], we find

(ρT℧ρT℧−1)1/2 =

(

e−βHXX(h)

Z(h) ℧
e−βHXX(h)

Z(h) ℧−1

)1/2

=

(

e−βHXX(h)

Z(h)
e−β℧HXX(h)℧−1

Z(h)

)1/2

=

(

e−βHXX(h)e−βHXX(−h)

Z(h)2

)1/2

=

(

e−2βHXX(0)

Z(h)2

)1/2

=
Z(0)
Z(h)ρT |h=0,

(40)
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FIG. 2: Plot of then-concurrence of thermal states in 100 qubits
of the HamitonianHXX(h) as function of magnetic field strength
h. Shown are plots at several temperatures in units of the interac-
tion strength:t = kBT/J. As the temperature drops to zero, then-
concurrence as a function ofh approaches a step function with a dis-
continuity at the critical magnetic field strengthhcrit . For n = 100,
hcrit = 2J tan(π/100) ≈ 0.0314J.

whereρT |h=0 denotes the thermal ensemble ath = 0. In de-
riving Eq. 40 we have used Eq. 7 in the third line and the fact
that[HXX(0),hSz] = 0 in the fourth line. The concurrence is

Cn(ρT) =
Z(0)

Z(h)
max

{

0,2e−βE0/Z(0)−1

}

. (41)

whereE0 is the ground state energy ofHXX(0).
For the isotropic XX model, the partition function is calcu-

lated using the the exact diagonalization in Sec. III [13]

Z(h) = 2n−1
(

∏n/2
k=1cosh2(ε2k−1β)+ ∏n/2

k=1 sinh2(ε2k−1β)

+∏n/2−1
k=1 cosh2(ε2kβ)cosh(ε0β)cosh(εnβ)

−∏n/2−1
k=1 sinh2(ε2kβ)sinh(ε0β)sinh(εnβ)

)

.
(42)

Using this expression forZ(h) and the value of the ground
state energy in Eq. 51, the concurrence is readily computed,
(see Figs. 2 and 3.)

It is useful to know how mixed the quantum state can be
before quantum correlations are lost. For this purpose we de-
fine a threshold temperatureTth as the temperature where the
concurrence changes from a positive quantity from belowTth
to zero aboveTth. The value ofβth = (kBTth)

−1 is obtained by
solving the equation

2e−βthE0/Z(0)−1 = 0. (43)

An approximate solution forTth can be found in the limit of
largen. The ground state energy Eq. 51 per particle converges
to,

lim
n→∞

E0

n
= lim

n→∞

−4Jcsc(π/n)

n
= −4J

π
(44)

In the same limit,ε2k−1 ≈ ε2k, and the logarithm of the parti-
tion function per particle converges to

lim
n→∞

lnZ(0)

n
=

2
π

∫ π/2

0
dω ln[2cosh(2Jβcos(ω))]. (45)

FIG. 3: Plot of then-concurrence as a function of logarithm of the
temperature for thermal states of the quantum XX model with zero
magnetic field. The concurrence is plotted for several values of the
total number of spinsn.

We can reëxpress the integral as an infinite series in(Jβ)−1:

lim
n→∞

lnZ(0)

n
= 4Jβ/π + 2

π
∫ π/2

0 dω ln[1+e−4Jβcos(ω)]

= 4Jβ/π +n∑∞
k=1

2(−1)k+1

πk

∫ π/2
0 dωe−4kJβcos(ω)

= 4Jβ/π + ∑∞
k=1

(−1)k+1

k [I0(4kJβ)−L0(4kJβ)]

≈ 4Jβ/π−∑∞
k=1

(−1)k+1

πk ∑∞
m=0

(−1)m+1Γ(1/2+m)
Γ(1/2−m)(2kJβ)2m+1

= 4Jβ/π + ∑∞
m=0

(−1)m(1−2−2m−1)ζ(2m+2)Γ(1/2+m)

πΓ(1/2−m)(2Jβ)2m+1

(46)
whereI0(x)(L0(x)) is the zeroth order Bessel(Struve) function
andζ(x) is the Riemann Zeta function. The approximation in
the fourth line is valid whenJβ≫ 1 [17]. Inserting the two
asymptotic expressions into Eq. 43, and neglecting terms that
fall off like (Jβ)−3 and faster, we find

kBTth ≈
J24ln2

nπ
(47)

One can then conclude that entanglement as measured by the
n-concurrence is greater than zero when the temperature is
less than the interaction energy per particle. The derived ex-
pression forTth underestimates the exact valueTth(exact) by
roughly 20% (see Table I.)

We compare our result with a related threshold temperature
studied in [14] for a ring of qubits coupled via the antiferro-
magnetic Heisenberg interaction. There it was found that the
threshold temperature for nearest neighbor 2-concurrenceap-
proaches a constant in the thermodynamic limit. This seems to
indicate that quantum correlations between interacting qubit
pairs are insensitive to changes in the character of the global
thermal state as the system size increases. In contrast, forthe
XX model, the threshold temperature for then-concurrence
decreases inversely with the number of qubits. While we
study a different spin chain Hamiltonian, qualitatively weex-
pect a different threshold temperature forn-concurrence ver-
sus 2-concurrence in any spin chain model. This is because
any time reversal symmetric Hamiltonian, of which the XYZ
model is one type, has a maximally concurrent ground state
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TABLE I: Ratio of the approximate analytic value of threshold tem-
peratureTth from Eq. 57 to the numerically computed exact value
T p,o

th (exact) for periodic (p) and open (o) boundaries. The ratio is
computed for several decades of the system sizen.

n 10 102 103 104

Tth
Tp

th(exact) 0.8159 0.7960 0.7959 0.7959
Tth

To
th(exact) 0.9979 0.8969 0.8887 0.8879

for any evenn provided it is non-degenerate. The size depen-
dence ofTth is a consequence of the fact that the ground state
population decreases with the size of the system for a fixed
temperature.

V. OPEN BOUNDARIES

The previous analysis was done for the quantum XY model
in one dimension with periodic boundaries. In most experi-
mental situations it will be easier to construct the spin chains
with open boundaries. In this section we rederive the critical
magnetic field and threshold temperature for this case.

The quantum XX model in one dimension with open
boundaries is

HXX(h) = ∑n−1
j=1 J(σx

jσx
j+1 + σy

jσ
y
j+1)+h∑n

j=1 σz
j

= ∑n−1
j=1 2J(σ+

j σ−j+1 + σ−j σ+
j+1)+h∑n

j=1 σz
j .
(48)

It is assumed thatn is even. After the transformation from
Pauli operators to fermionic operators, the Hamiltonian as-
sumes the form,

HXX(h) = nh−2J
n−1

∑
j=1

(a†
j+1a j +a†

j a j+1)−2h
n

∑
j=1

a†
j a j (49)

The Hamiltonian is a quadratic form on the vector space
of the creation and annihilation operators{a j ,a

†
j}. Written

as ann× n matrix in the basis{a1,a2, . . .an}, HXX(h) is a
sum of two terms. The first is proportional to the identity
and the second is a tridiagonal matrix with elements−2h on
the diagonal and elements−2J on the nearest off diagonal.
The eigenvalues and eigenvectors of the tridiagonal can be
solved for exactly yieldingHXX(h) = ∑k Λkb

†
kbk +C, where

Λk = −2h− 4Jcos(πk/(n+ 1)), b†
j ,b j are the quasi-particle

creation and annihilation fermionic operators, andC is a con-
stant. The value of the constant is determined by demanding
that Tr[HXX(h)] = 0. Summing over all possible particle oc-
cupations, each particle energyΛk appears∑n−1

l=0

(n−1
l

)

= 2n−1

times and the constant satisfies−2n−1∑n
k=1 Λk + 2nC = 0 or

C = nh. The eigenenergies can be expressed compactly as

E =

{ n

∑
k=1

Λk; Λk ∈ {−2h−4Jcos(πk/(n+1)),0}
}

+nh

(50)

At zero magnetic field and forJ≥ 0, the ground state energy
is

E0 = −4J∑n/2
k=1cos(πk/(n+1))

= −4J

(

cos

(

nπ
4(n+1)

)

csc

(

π
2(n+1)

)

sin

(

(n+2)π
4(n+1)

)

−1

)

.

(51)
The corresponding ground state is an eigenstate ofSz =
∑n

j=1 σz
j with eigenvaluesz = 0. As the magnetic field is in-

creased from zero, this eigenstate becomes degenerate with
thesz =−2 eigenstate at the critical value

hcrit = 2Jsin(π/(2(n+1))). (52)

For |h| ≥ hcrit , then-concurrence of the ground state is equal
to zero. Notice forn≫ 1, hcrit ≈ Jπ/n which is the same
asymptotic as in the XX model with periodic boundaries.

For then-concurrence of thermal states, we need an ex-
pression for the partition functionZ(h) = e−βHHH(h). In the
representation of the quasi-particles, the Hamiltonian can be
written as a tensor product:

HXX(h) =
n

⊗

k=1

(

e−β(Λk+h) 0
0 e−βh

)

(53)

The partition function is then

Z(h) = ∏n
k=1e−βh(e−βΛk +1)

= e−β(nh+∑n
k=1Λk/2) ∏n

k=12cosh(βΛk/2)
= 2n∏n

k=1cosh(β(h+2Jcos(πk/(n+1)))
(54)

Given an expression for the partition function, the concur-
rence can be calculated for any magnetic field and temperature
using Eq. 41. The threshold temperature can be computed by
the same proceedure used in Sec. IV. In the largen limit, the
ground state energy at zero magnetic field is

lim
n→∞

E0

n
= −4J

π
, (55)

which is the same asymptotic as the case with periodic bound-
aries. Again in the largen limit we find

lim
n→∞

lnZ(0)

n
=

2
π

∫ π/2

0
dω ln[2cosh(2Jβcos(ω))]. (56)

and the threshold temperature is therefore

kBTth ≈
J24ln2

nπ
. (57)

In Table I the exact value of the threshold temperature is com-
puted numerically for comparison with the open boundaries
case.

VI. MEASUREMENT

For any measure of entanglement in a many body system
it is important to find a practical method to construct its cor-
responding observable or set of observables. Computing the
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n-concurrence on pure states is generically hard because the
time reversal operator is not physical and therefore does not
correspond to any single observable on the system. It has been
shown that for pure states then-tangle, which is the square of
then-concurrence, can be computed in terms of the multipho-
ton Stokes scalar [15]. There are an exponentially large num-
ber of multiphoton Stokes parameters that need to be mea-
sured in order to compute this scalar. Nevertheless, it may
still be more efficient than resorting to direct state tomography
over alln qubits which generically requires 4n measurements.

A notable feature of Hamiltonians over spin chains such as
the XX model is the reality of the Hamiltonian. This implies
that the energy eigenstates are real and the concurrence of the
ground state is then

Cn(|ψg〉) = |〈ψg|℧|ψg〉|= |〈ψg|
n

∏
j=1

(−iσy
j)|ψg〉| (58)

Measuring the expectation value of the many body oper-
ator S= ∏n

j=1(−iσy
j) can be done in various ways and the

preferred technique will depend on the particular system.
One approach would be to introduce an ancillary qubit pre-
pared in the state|+x〉A = 1/

√
2(|0〉A + |1〉A) and use this an-

cilla as a control in a sequence ofn controlled rotation gates
∏n

j=1 ΛA, j(−iσy). After measuring the ancilla in the|±x〉A ba-
sis, the concurrence is obtained from the measurement proba-
bilities as|Prob(A == 1)−Prob(A == 0)| = Cn(|ψg〉).

Measuring then-concurrence for mixed states is much more
difficult and will probably require some amount of state to-
mography. In the case of thermal samples, if the temperature
can be measured by some means then the results in this paper
place a bound on how high it can be before quantum correla-
tions as measured byCn are lost. The analysis above shows
that nearly maximaln-concurrence is achievable in the XX
model with zero magnetic field for sufficiently small temper-
atures. Because the temperature must be less than the interac-
tion energy per particle this will be experimentally challeng-
ing to observe.

One candidate system may be cold trapped neutral atoms.
Recently, it was proposed to simulate the quantum XY model
in a lattice of spins trapped in an optical lattice [16]. The lat-
tice can be designed to trap an antiferromagnetic array of spin
polarized atoms and the interactions can be engineered via
“always on” ground state collisions between nearest neighbor
atoms in the lattice. The advantage of using trapped atoms
is that the lattice can be loaded from an atomic Bose Ein-
stein Condensate (BEC) which are routinely prepared at ex-
tremely low temperatures (∼ 50 nK). For example, in a 1D
lattice with 100 qubits at a temperature of 50 nK, one would
need interaction strengths ofJ ≈ h̄2π× 16KHz in order to
be in the regime of non-zeron-concurrence and an interac-
tion strengthJ = h̄2π× 115KHz to be close to maximaln-
concurrence. Generating a sufficiently strong interactionbe-
tween neutral atoms is challenging, however, for appropriately
tuned trapped potentials the collisional interactions canbe on
the order of a few tens of kilohertz.

VII. CONCLUSIONS

We have investigated the behavior of many qubit entangle-
ment in one dimensional spin chains. The entanglement mea-
sure used, then-concurrence, is a global measure in the sense
that its value goes to zero if any qubit is completely disentan-
gled. This measure is appropriate in the context of spin chains
because it probes the onset of a break in the time reversal sym-
metry when a magnetic field is introduced. For pure states
in n even qubits, then-concurrence is maximal at zero mag-
netic field. In the XX model, the entanglement is not immedi-
ately lost when a magnetic field perturbation is added, rather
it jumps abruptly to zero at a critical magnetic field strength
corresponding to the first degeneracy point. Using the sym-
metry properties of the Hamiltonian under conjugation by the
time reversal operation we are able to obtain expressions for
the entanglement of thermal systems of arbitrary sizen. The
entanglement was shown to be finite below a certain critical
magnetic field strength and threshold temperature.

Several outstanding issues remain. First, the objection may
be raised that maximaln-concurrence in the ground states of
HXY(0) does not imply global entanglement whatsoever be-
cause subglobal entanglement, i.e. tensor products of time
reversal symmetric states, also have maximalCn (see Sec. II).
However, it has been proven [1, 2] that the ground state of the
XX model has non vanishing 2-concurrence over all pair sep-
arations. Hence, there can be no way to partition the ground
state into disentangled subsets of qubits and therefore theen-
tanglement is truly global. Second, it is of interest to study
how inhomogeneous couplings affect then-concurrence. Per-
haps the behavior of global entanglement could give a signa-
ture of local defects. Finally, because time reversal is nota
spatial symmetry, it may be possible to investigate entangle-
ment in the usually more complicated model of spin chains
embedded ind > 1 dimensions.

Another question for future research is whether the highly
entangled ground state of a spin chain can be efficiently trans-
formed into a state useful from the point of view of quantum
information processing (QIP). Spin chains are a promising ar-
chitecture to implement manyQIP tasks such as entanglement
distribution [18], quantum state swapping [19], and quantum
computation [20]. Preparing and observing many-body en-
tanglement will be an important first step to realizing these
challenging tasks. It is appealing to try to generate useful
entanglement by allowing the system to naturally cool to its
ground state. The results obtained in this paper help define
limits to the environmental conditions under which one type
of entanglement (then-concurrence) can be prepared in this
way. It is known [9] that all states of fixedn-concurrence are
orbits of the Lie (symmetry) groupK ∼= SO(2n) of all unitary
evolutions which admit time reversal antisymmetric Hamil-
tonains. In particular, there is some (and there are many)
Hamiltonian(s)H with H = −℧H℧−1 and

∣

∣GHZ
〉

= k|ψg〉
for k = exp( −iHt/h̄ ). It is unclear whether there existeffi-
cientoperations inK to transform from one to the other.
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APPENDIX A: CONCURRENCE OF MIXED STATES

This appendix expands upon published work of Wootters
and Uhlmann [7, 23], recalling their closed-form expression
for the minimum Eq. 5. It is, to our knowledge, the first
treatment of this problem that is complete and self-contained.

1. Notation and conventions

For either scalars or vectors, we denote complex conjugates
by an overline. Also, we often use both real and complex
operators. Thus, we forego bra-ket notation in favor of the set
{ej}ℓ−1

j=0 of standard basis vectors, i.e. column matrices with

(ej)ℓ = δℓ
j . The symbolsRp×q andC

p×q denotep×q real,
complex matrices respectively. Finally, we use a dagger for
adjoint throughout. For example,e†

j is formally equivalent to
a bra if the operator is intended to be complex.

2. Background

Throughout, we distinguishCℓ and R
2ℓ as vector spaces

over R. Thus, throughoutwe use following choice ofR-
isomorphism:

x = a+ ib ∈ C
ℓ ←→ xR =

(

a
b

)

∈ R
2ℓ (A1)

If w = u+ iv ∈ Cℓ×ℓ is a C-linear map, we note the corre-
spondingR-linear map under the isomorphism. Specifically,
w(a+ ib) = (u+ iv)(a+ ib) = (ua−vb)+ i(va+ub) for

w = u+ iv ∈ C
ℓ×ℓ←→ wR =

(

u −v
v u

)

∈ R
2ℓ×2ℓ (A2)

Finally, we note thatxx† is not xRxT
R
. Rather, byρR we intend

R-linear map that extends theC-linear map given byρ. Com-
puting, asx = a+ ib ∈ Cℓ, we seeρ = xx† = (a+ ib)(aT −
ibT) = (aaT +bbT)+ i(baT−abT), for

ρ = xx†,x = a+ ib, ρR =

(

aaT +bbT abT −baT

baT−abT aaT +bbT

)

ρ = u+ iv ∈Cℓ×ℓ, ρR =

(

u −v
v u

)

(A3)
We also should breifly comment on the structure ofuR

for uu† = Iℓ, u ∈ Cℓ×ℓ. Clearly any unitary map ofCℓ will
lift to an orthogonal map ofR2ℓ, but this is not the com-
plete structure. Complex multiplication byi lifts as a matrix

J =

(

0 −I
I 0

)

. Then an orthogonal mapo of R
2ℓ haso = uR

for some unitaryu iff oJ = Jo. Equivalently, a unitary map is
an orthogonal map which is alsoC-linear. Adding a tad more
language, as one speaks of the unitary groupU(ℓ) there is also
a real symplectic group [21, pg. 446] given by

Sp(ℓ,R) = { A∈R
2ℓ×2ℓ ; ATJA= J } (A4)

Then it is standard thatSp(ℓ,R)∩O(2ℓ)∼= U(ℓ) [21, pg. 447,
Lemma2.1(c) of Chap.X.2] as we have verified above.

We also note generalities on time-reversal symmetry op-
erators, denotedΘ, on a Hilbert state-space of complex di-
mensionN. Such aΘ is an R-linear map of the state
space possessing (i) complex anti-linearity, (ii) orthogonality
ΘTΘ = I2N, and (iii) projectively involutivityΘ2 = (eiϕIN)R,
φ 6= 0. Given thatτ is the R-linear map corresponding to
complex conjugation onCN, we note that any antilinear map
(henceΘ) may be written asΘ = ωRτ for ω ∈ CN×N. Due
to orthogonality ofΘ andτ, ωR is orthogonal. Henceω is
unitary, givenC-linearity. We further claim that eiϕ is ±1.
Indeed,Θ2 = ωRτωRτ = ωRωR, so thatωω = eiϕIN. But
Tr(ωω) = Tr(ωω), demanding that the trace is real. Hence
eiϕ is±1. We refer the+1 case asbosonictime-reversal sym-
metry operators, and the−1 case arefermionictime-reversal
symmetry operators.

3. Analysis of

∣

∣

∣

∣

∑ℓ−1
j=0 eiθ j λ j

∣

∣

∣

∣

The following proposition will be quite important to what
follows. Thus, we present a careful argument. It improves an
earlier inductive proof of the second author and was suggested
by Dianne O’Leary.

Proposition A.1 Let λ0 ≥ λ1 ≥ λ2 ≥ ·· · ≥ λℓ−1 ≥ 0 be an
ordered set of real numbers.

• If ∑ℓ−1
j=1 λ j < λ0, then

λ0−
ℓ−1

∑
j=1

λ j = min

{ ∣

∣

∣

∣

ℓ−1

∑
j=0

eiθ j λ j

∣

∣

∣

∣

; θ0, · · ·θℓ−1 ∈ R

}

(A5)

• If ∑ℓ−1
j=1 λ j ≥ λ0, then there exist{θ j}ℓ−1

j=0 so that

ℓ−1

∑
j=0

eiθ j λ j = 0 (A6)

The proof uses the followig two lemmas. The first is a stan-
dard result in combinatorics.

Lemma A.2 Let λ0 ≥ λ1 ≥ λ2 ≥ ·· · ≥ λℓ−1 ≥ 0, and label
S= {0,1, · · · , ℓ−1}. Then there exists a partition S= S1⊔S2
such that

λ0 ≥ ∑
j∈S1

λ j − ∑
j∈S2

λ j ≥ 0 (A7)

Proof: Let S= S1⊔S2 be a partioning chosen to minimize

max

{

∑ j∈S1
λ j−∑ j∈S2

λ j ,0

}

. Labelδ≥ 0 to be this minimal

difference, i.e.δ = ∑ j∈S1
λ j −∑ j∈S2

λ j .
Assumeby way of contradictionthatδ > λ0. In particular,

some element ofS1 must be nonzero, sayλk > 0. Now place
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S̃1 = S1−{λk} andS̃2 = S2⊔{λk}. Then label̃δ≥ 0 by

δ̃ =

∣

∣

∣

∣

∑
j∈S̃1

λ j − ∑
j∈S̃2

λ j

∣

∣

∣

∣

= |δ−2λk| (A8)

Now either|δ−2λk|= δ−2λk or else|δ−2λk|= 2λk−δ. In
the former case, note thatδ− δ̃ = 2λk > 0, i.e. δ > δ̃ contra-
diction. In the latter case,δ− δ̃ = 2δ−2λk≥ 2(δ−λ0) > 0,
contradiction. �

Lemma A.3 Let t0 ≥ t1 ≥ 0, and label L(θ) = |t0 + eiθt1|.
Then for every s∈ [t0− t1, t0 + t1], there is someθ0 ∈ [0,π]
such that L(θ0) = s.

Proof: ClearlyL(θ) is continuous. NowL(π) = t0− t1 and
L(0) = t0 + t1, so that the result follows by the Intermediate
Value Theorem. �

Proof of Prop. A.1: We begin with the first item. Any

{θ j}ℓ−1
j=1 must have

∣

∣

∣

∣

∑ℓ−1
j=1eiθ j λ j

∣

∣

∣

∣

≤ ∑ℓ−1
j=1 |eiθ j λ j |. Thus

∣

∣

∣

∣

ℓ−1

∑
j=0

eiθ j λ j

∣

∣

∣

∣

≥ |eiθ0λ0|−
∣

∣

∣

∣

ℓ−1

∑
j=1

eiθ j λ j

∣

∣

∣

∣

≥ λ0−
ℓ−1

∑
j=1

λ j (A9)

On the other hand,∑ℓ−1
j=1 λ j < λ0 demands the last expression

of Equation A9 is contained within the set being minimized.
For the second part, label the(ℓ − 1)-index set S =
{1, · · · , ℓ−1}. By Lemma A.2, we may partitionS= S1⊔S2
so that

λ0 ≥ λ1 ≥ ∑
j∈S1

λ j − ∑
j∈S2

λ j ≥ 0 (A10)

Label t0 = ∑ j∈S1
λ j and t1 = ∑ j∈S2

λ j . Now t0 + t1 =

∑ℓ−1
j=1 λ j ≥ λ0. Hence by Lemma A.3, there is someθ so that

|t0 +eiθt1| =

∣

∣

∣

∣

∑
j∈S1

λ j + ∑
j∈S2

eiθλ j

∣

∣

∣

∣

= λ0 (A11)

Hence for some eiψ, we have eiψλ0 = ∑ j∈S1
λ j + ∑ j∈S2

eiθλ j .
Thus eiψλ0 + ∑ j∈S1

eiπλ j + ∑ j∈S2
ei(θ+π)λ j = 0. �

4. Concurrence of Ensembles

We set further notations regarding density matrices. These
make later arguments more clear and terse.

Definition A.4 Let ρ ∈ CN×N be a density matrix, i.e.ρ =
ρ†, ρ ≥ 0, and Tr(ρ) = 1. A subnormalized ensemble forρ
of lengthℓ is any collection of vectorsE = {x j}ℓ−1

j=0 ⊂ C
N

satisfyingρ = ∑ℓ−1
j=0x jx

†
j . This is associated to anormalized

ensemble of lengthℓ given by{y j}ℓ−1
j=0, wherey j =~0 if x j =~0

andy j = x j/|x j | else. We further define a right action of the
unitary groupU(ℓ) on the set of subnormalized ensembles of
lengthℓ as follows. Ifu= (u jk) ∈Cℓ×ℓ, uu† = Iℓ, thenE ·u =

{wj}ℓ−1
j=0 wherewj = ∑ℓ−1

k=0xke
†
j uek = ∑ℓ−1

k=0xku jk.

Remark A.5 As always, we could produce a left action
by considering the right action of the adjoint. However, we
find that confusing in this context. Checking the right action,
consider{wj}ℓ−1

j=0 = (E ·u1) ·u2 for u1,u2 unitary. Then

wj =
ℓ−1

∑
k=0

ℓ−1

∑
p=0

xpu1
jku2

kl =
ℓ−1

∑
p=0

xp

( N−1

∑
k=0

u1
jku2

kl

)

(A12)

This isE · (u1u2). We also remark that ifE is an ensemble for
ρ, then so likewise isE ·u. Indeed,

∑ℓ−1
j=0wjw

†
j = ∑ℓ−1

j=0∑ℓ−1
k=0 ∑ℓ−1

p=0xke
†
j ueke†

pu†ejx†
p =

∑ℓ−1
j=0 ∑ℓ−1

k=0xke
†
j uu†ejx

†
k = ∑ℓ−1

k=0xkx
†
k = ρ

(A13)

Thus, theU(ℓ) action respects the density matrix structure.
It has been proven [22] the action is transitive on the set
returningρ; any subnormalized ensemble forρ of lengthℓ
arises in this way.Every ρ possesses an ensemble of length
n, due to the spectral theorem. We also remark that since
dimCEndC(CN) = N2, it is in some sense wasteful to take
ℓ > N2. However, the arguments would not simplify with this
convention. Finally, note that evidently any ensemble forρ
must have length at least rank(ρ). ♦

Definition A.6 LetE = {x j}N−1
j=0 be any ensemble of a fixed

density matrixρ. Thepreconcurrence c2p : CN→ C is

c2p(x) =

{

x†Θx = x†ωx̄, x 6=~0
0, x =~0

(A14)

Note that forx 6=~0, |c2p(x)| = |x|2C2p(x/|x|). We then define
the concurrence of an ensembleE to be the following sum,
for E = {xk}ℓ−1

k=0:

C2p(E ) =
ℓ−1

∑
k=0

|c2p(xk)| = ∑
x6=~0∈E

|x|2C2p( x/|x| ) (A15)

We also make the following definition, fixing some preferred
ensembleE0 for ρ.

Cℓ
2p(ρ) = min{C2p(E ) ;E is an ensemble of lengthℓ for ρ}

= min{C2p(E0 ·u) ; u∈U(ℓ) }
(A16)

We then defineC2p(ρ) = min{Cℓ
2p(ρ) ; ℓ≥ 1 }.
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Theorem A.7 ([23]) View a given time-reversal symmetry op-
erator Θ ∈ R2N×2N ∼= EndR(Hn), and denote theR-linear
map corresponding toρ asρR ∈ R2N×2N. SinceΘ is antiuni-
tary, in particular orthogonal,ΘT = Θ−1. We writeΘ = ωRτ
for ω ∈ CN×N and τ the complex-conjugation viewed within
EndR(CN). Moreover say{λ j}N−1

j=0 = spec[M(ρ)] are the
(real) eigenvalues of

M(ρ) = (
√ρ ω ρ ω†√ρ)1/2, noting that

[ (
√ρ ω ρ ω†√ρ)1/2 ]

R
= (
√ρRΘρRΘT√ρR)1/2 (A17)

ordered so thatλ0 ≥ λ1 ≥ λ2 · · · ≥ λN−1 ≥ 0. Then if N= 2n

andΘ bosonic, we must have

C2p(ρ) = max

{

0,λ0−
N−1

∑
j=1

λ j

}

(A18)

In view of Proposition A.1, we prove this theorem in two
steps. PutT = max{0,λ0−∑N−1

j=1 λ j}. In the first step, we
produce an ensembleEmin for ρ (of lengthN) such that the
T = C2p(Emin). In the second step, we restrict to caseT 6= 0
and show that any ensembleE for ρ hasC2p(E )≥ T. Each of
the two steps is organized within a subsection, culiminating in
Propositions A.14, A.15, and A.17.

5. Existence of a Minimizing Ensemble

Lemma A.8 Let A∈ Rℓ×ℓ. Then there is some o∈ Rℓ×ℓ,
ooT = Iℓ, so that(oAoT)00 = (oAoT)11 = · · ·= (oAoT)ℓ−1 ℓ−1.

Sketch: LetT = 1
ℓ ∑ℓ−1

j=0a j j , the average value of the diagonal

elements ofA. Since the trace ofoAoT coincides with the
original trace, we seek to set all diagonal elements to beT. If
every diagonal element isT already, then takeo = Iℓ.

Else some diagonal element exceedsT, and some is less
than T. By choosing an appropriate permutation matrixΠ
and relabelingΠAΠT as A, we may suppose without loss
of generality (WLOG) thata00 < T, a11 > T. Now la-
bel R(t) = e−itσy ⊕ Iℓ−2. Consider the continuous function
t 7→ [R(t)AR(t)T ]00 = cos2(t)a00−sin2(t)a11. The Intermedi-
ate Value Theorem shows that for somet0 the diagonal entry
is T. Now induct on the number of entries equal toT. �

Lemma A.9 Let η ∈ Cℓ×ℓ be a complex, perhaps non-
Hermitian matrix: η = ηT . Then there exists a unitary matrix
u∈U(ℓ) so that

u η uT = Λ, Λ = diag(λ0,λ1, . . . ,λℓ−1) (A19)

Moreover, we may chooseλ0≥ λ1≥ ·· · ≥ λℓ−1≥ 0.

Remark A.10 This is not a diagonalization ofη! Indeed,
u is unitary; u−1 = u† 6= uT . The point of this proof is to
diagonalize theR-linear mapηRτ, which is symmetric. ♦

Proof: Sinceη is symmetric, we must have the following:

ηR =

(

u −v
v u

)

, u = uT ,v = vT (A20)

Now if µi denotes scalar multplication byi, then clearlyµiη =
ηµi . ThusJηR = ηRJ, for J = (µi)R = (−iσy)⊗ Iℓ.

Now let η̃ be the associated complex anti-linear map, i.e.
η̃x = ηx. Thenη̃R = ηRτ, and noting thatτ = diag(IN,−IN)
produces

(η̃)R = ηRτ =

(

u −v
−v −u

)

(A21)

Hence η̃R = η̃T
R
, i.e. η̃R is diagonalized by some matrix

orthogonal matrix. We next argue that such an orthogonal
matrix o may be chosen to be symplectic (withinSp(ℓ,R).)
Per earlier discussion,o∈ Sp(ℓ,R)∩O(2ℓ) will then demand
o = uR for someu∈U(ℓ).
Step # 1: Note that for any eigenvalue ofη̃R, sayλ, we also
have−λ as an eigenvalue. ForJη̃R = −η̃RJ, sinceη̃ is C-
antilinear. HencẽηRJv= −Jη̃Rv = (−λ)Jv, givenv ∈ Vλ ⊂
R2ℓ.
Step #2: Choose a collection of positive eigenvalues and
takeΛ = diag(λ0, . . . ,λℓ−1). For the corresponding orthonor-
mal eigenvectorsv0, · · · ,vℓ−1, consider the orthogonal matrix
o = (v0 · · ·vℓ−1Jv0 · · ·Jvℓ−1). ThenJo= oJ, i.e. o∈ Sp(ℓ,R).
Moreoveroη̃RoT = Λ⊕ (−Λ). Note that without loss of gen-
erality,Λ reflects a choiceλ0≥ λ1≥ ·· ·λℓ−1≥ 0.
Step #3: Let u be the unitary matrix resulting fromo in the
last step. Then the final equation demandsuη̃u† = Λτ, i.e.
uητu†τ = Λ, i.e. uηuT = Λ. �

Definition A.11 Let E = {x j}N−1
j=0 be an ensemble for some

density matrixρ, and letΘ = ωτ be a time-reversal symmetry
operator. Then we defineη(E ,Θ) to be that matrix whose en-
tries are[η(E ,Θ)] jk = x†

j Θxk = x†
j ωxk. We often suppress the

arguments and writeη = η(E ,Θ) when the context is clear.

Lemma A.12 We have the following basic properties of
η(E ,Θ).

1. η(E ·u,Θ) = u η(E ,Θ) u†.

2. For any two ensemblesE1, E2 of a givenρ of lengthℓ,
we have

spec[ η(E1,Θ) η(E1,Θ) ] = spec[ η(E2,Θ) η(E2,Θ) ]
(A22)

3. If E = {x j}ℓ−1
j=0, then c2p(xk) = ηkk.

Proof: Keeping E = {x j}N−1
j=0 , note thatE · u is wj =

∑n−1
k=0 xke

†
j uek. Thus

[η(E ·u,Θ)] jk = w†
j ωwk =

∑ℓ−1
p=0∑ℓ−1

q=0e†
pu†ejx†

pωxqe†
kueq =

∑ℓ−1
p=0∑ℓ−1

q=0u jp[η(E ,Θ)]pqu
†
qk

(A23)

The first item results, comparing entry by entry. For the sec-
ond item, recall thatE2 = E1 · u for some unitary matrixu.
The third item is the definition of preconcurrence. �

Proposition A.13 Fix a density matrixρ ∈ C
ℓ×ℓ. SupposeΘ

is bosonic, so thatω = ωT .
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1. Then there exists a subnormalized ensembleE0 =
{x j}ℓ−1

j=0 so thatη(E0,Θ) is diagonal, real, and contains
only nonnegative entries.

2. Label M(ρ) = [
√ρωρω†√ρ]1/2. If the length of a given

ensembleE is N, then

spec[M(ρ)] = spec[
√

η(E ,Θ) η(E ,Θ)] (A24)

Proof: We first prove Item 1. FixE of lengthℓ andΘ, so that
η∈Cℓ×ℓ. Sinceω = ωT , we haveη = ηT . Hence, there exists
by Lemma A.9 a unitary matrixu such thatu η(E ,Θ) uT =
Λ, Λ = diag(λ0,λ1, · · · ,λℓ−1), andλ0≥ λ1≥ ·· · ≥ λℓ−1≥ 0.
Thus,Λ = η(E ·u,Θ).

For Item 2, letE = {x j}N−1
j=0 . Now by Lemma A.12, we may

suppose without loss of generality thatE is a subnormalized
eigenensemble, so thatx†

j xk = δk
j andρx j = ν jx j for {ν j}N−1

j=0
the set of eigenvalues ofρ. Form the unitary matrixw with
wej = x j , i.e. w = ∑N−1

j=0 x je
†
j . Then

wηηw† =

(

∑N−1
j=0 x je

†
j

)

∑N−1
p=0 ep

√νpx†
pωρω†

·∑N−1
q=0
√νqxqe†

q

(

∑N−1
k=0 x†

j ej

)

=

(

∑N−1
p=0
√νpxpx†

p

)

ωρω†

(

∑N−1
q=0
√νqxqx†

q

)

=
√ρωρω†√ρ

(A25)
In the last line, we note that{x j}N−1

j=0 is anormalizedensemble

for ρ. Hence, spec( ηη ) = spec(
√ρωρω†√ρ). �

Proposition A.14 Letλ0≥ λ1≥ ·· · ≥ λN−1≥ 0 be an order-
ing of the spectrum of M(ρ) per Theorem A.7. Suppose in ad-
dition that T= λ0−∑N−1

j=1 λ j > 0. Then there exists a subnor-
malized ensembleEminof length N such that C2p(Emin) = T.

Proof: By Proposition A.13, we produce an ensembleE0
of length N so thatη(E0,Θ) = Λ = diag(λ0,λ1, · · · ,λN−1).
Moreover, {λ j}N−1

j=0 = spec[M(ρ)], since ηη = Λ2. Now
label the phase matrixΦ = diag(1, i, i, · · · , i), and note
that T = Tr[Φη(E0,Θ)Φ†] = Tr[η(E0 ·Φ,Θ)]. Moreover,
Φη(E0,Θ)Φ† is real. Hence, by Lemma A.8, there exists an
orthogonal matrixo∈ CN×N such that[oη(E0 ·Φ,Θ)oT ] j j =
η(E0 · (Φo),Θ) j j = T/N, 0 ≤ j ≤ N− 1. We claim that
we may now takeEmin = E0 · (Φo). Indeed, putEmin =

{y j}N−1
j=0 . Theny†

j Θy j = η(Emin,Θ) j j = T/N for each 0≤
j ≤ N−1, so that

C2p(Emin) = ∑N−1
j=0 |y j |2C2p(y j/|y j |) =

∑N−1
j=0 |y

†
j Θy j | = ∑N−1

j=0 T/N = T
(A26)

This concludes the proof. �

Proposition A.15 Let N = 2n, and label λ0 ≥ λ1 ≥ ·· · ≥
λN−1 ≥ 0 an ordering of the spectrum of M(ρ) per Theorem
A.7. Suppose in addition that T= λ0−∑N−1

j=1 λ j ≤ 0. Then
there exists an ensembleEmin for ρ such that C2p(Emin) = 0.

Proof: Again, Proposition A.13 produces an ensembleE0 of
lengthN so thatη(E0,Θ) = Λ = diag(λ0,λ1, · · · ,λN−1) with
{λ j}N−1

j=0 = spec[M(ρ)]. In this event, we appeal to Proposi-
tion A.1 to assert that there must exist a collection of angles
{θ j}N−1

j=0 such that 0= |∑N−1
j=0 eiθ j λ j |. WLOG, takeθ0 = 0.

Now put Φ = diag(1,e−iθ1/2, · · · ,e−iθN−1/2). We then have
Tr[Φη(E0,Θ)Φ†] = 0. Recall the Hadamard computation
H = 1√

2
∑1

j ,k=0(−1) jk|k〉〈 j|, which is unitary. Now consider

Tr[H⊗nΦη(E0,Θ)Φ†H⊗n] = Tr[η(E0 · (ΦH⊗n),Θ)] = 0
(A27)

We next claim thatEmin = E0 · (ΦH⊗n) = {y j}N−1
j=0 is an en-

semble forρ consisting of concurrence zero states. Indeed,
put {zj}N−1

j=0 = E0 ·Φ. Thenz†
j Θzk = eiθ j λ jδk

j . Now consider
that due to the application of the Hadamard computation

y j =
N−1

∑
k=0

εkzj (A28)

for eachεk =±1. Hence,c2p(y j) = 0. �

6. Minimality of max {0,λ0−∑N−1
j=1 λ j}

Lemma A.16 Let r = rank(ρ) ≥ rank[M(ρ)]. Consider the
first r, concievably nonzero eigenvaluesλ0≥ λ1≥ ·· · ≥ λr ≥
0 of M(ρ). Then for any ensembleE of ρ of arbitray length
ℓ, for η = η(E ,Θ), the r largest eigenvalues of

√

ηη are also
λ0≥ λ1≥ ·· · ≥ λr−1≥ 0.

Sketch: To begin, writeE as {x j}ℓ−1
j=0. Then ηη =

∑ℓ−1
j=0x†

j ωρω† ∑ℓ−1
k=0 xk Now note thatℓ ≥ r. Then by transi-

tivity of theU(ℓ) action, we may suppose without loss of gen-
erality thatE is a subnormalized eigenensemble, perhaps with
trailing zero eigenvectors. Letting{y j}ℓ−1

j=0 be the normalized
eigenensemble, again consider the matrixw wej = y j . Then
again for{ν j}rj=0 the nonzero eigenvalues ofρ,

wηηw† =

(

∑ℓ−1
j=0y je

†
j

)

∑ℓ−1
p=0ep

√νpy†
pωρω†

·∑ℓ−1
q=0yq

√νqe†
q

(

∑ℓ−1
k=0ejy

†
j

)

=
√ρωρω†√ρ

(A29)

Although w is no longer square, this statement nonetheless
implies the result on truncated spectra. �

Proposition A.17 Let E be any ensemble for a density ma-
trix ρ of lengthℓ. Let T = max{0,λ0−∑ℓ−1

j=1 λ j} for the λ j

nonincreasing and coinciding with the spectrum of M(ρ) =

(
√ρωρω†√ρ)1/2. Then C2p(E )≥ T.

Proof: Fix η = η(E ,Θ). We recall by Lemma A.9 that
there exists some unitary matrixu so thatuηuT = Λ. By
Lemma A.16, we haveΛ = diag(λ0,λ1,λ2, · · · ,λℓ−1) for λ0≥
λ1 ≥ ·· · ≥ λℓ−1 ≥ 0 the ℓ largest eigenvalues ofM(ρ) =
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(
√ρωρω†√ρ)1/2. Moreover every nonzero eigenvalue of

M(ρ) appears within the set of theℓ largest.
We first consider the case thatT = λ0 − ∑ℓ

j=1λ j ≥
0. Now note that by the Definition A.11 forη, we
have C2p(E ) = ∑ℓ−1

j=0 |η j j |. Moreover, η jk = (uΛuT) jk =

∑ℓ−1
p=0u jpλpukp, so thatη j j = ∑ℓ−1

p=0u2
jpλp. The result then

follows from the Schwarz inequality, given∑ℓ−1
p=0 |u jp|2 = 1:

C2p(E ) = ∑ℓ−1
j=0 |η j j |

= ∑ℓ−1
j=0

∣

∣

∣

∣

∑ℓ−1
p=0∑ℓ−1

j=1u2
jpλp

∣

∣

∣

∣

≥ λ0−∑ℓ−1
p=0λp

∣

∣

∣

∣

∑ℓ−1
j=1u2

jp

∣

∣

∣

∣

≥ λ0−∑ℓ−1
p=1λp

(A30)

This concludes the proof forλ0≥ ∑ℓ−1
j=1 λ j .

Thus, supposeT = 0. Then the statement is vacuous, since
alwaysC2p(E )≥ 0. This concludes the proof. �
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